
info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 1 / 7

Organizations are worried about protecting their data and
applications in the cloud. They use a number of security
products and best practices to keep malware out. However,
data breaches still happen, and security threats from
malicious insiders, zero day bugs, and misconfiguration of
policies still persist.

For example, a typical 3-tier web application deployed
in an organization may look like Figure 1. The application
consists of a web frontend and load balancer such as Nginx,
application logic implemented in a framework such as
Python Flask, and a database such as MySQL. This application
runs as a set of containers, and processes PII data such as
user information and credit cards. The organization uses
mutual TLS to secure communication between containers
and issues certificates to the containers.

This application looks secure on the face of it, but there are
multiple vulnerabilities as described in Threat Model Blog
that can be exploited by a malicious actor. As PII data moves
through the different tiers of the application, a bad actor may
be able to steal the data while it is at rest (from unencrypted
storage, or encrypted storage with unprotected encryption

The Runtime Encryption® Company

1. Introduction

Fortanix Runtime Encryption® Platform

Whitepaper

key), in motion (by stealing and manipulating TLS keys and
certificates), or in use (through memory scraping).

Runtime Encryption® technology secures the data used by
the application by encrypting it at all times. The encryption
keys are secured inside Intel® SGX secure enclaves. The
only time the data gets decrypted is when it is being pro-
cessed by the CPU inside the secure enclave. The Runtime
Encryption environment for the application protects it all
from all external threats, including attacks by root users,
compromised network, advanced malware, memory scrap-
ing, operating system zero-day bugs, rogue hardware
devices, and code-injection based attacks.

As shown in Figure 2, the 3-tier application can be protected
using Fortanix Runtime Encryption without changing
the application binaries or the user experience. Runtime
Encryption environment introduces two components
in an enterprise – EnclaveOS™, and Enclave Manager™.
EnclaveOS is a runtime environment for applications to
allow them to run inside SGX enclaves. Enclave Manager is
a management software which provides visibility into the
running enclaves and establishes trust between enclaves
using the remote attestation capabilities of Intel® SGX.

Certificate Issuance

Frontend Application Logic Database Storage

Organization CA

TLS TLS TLS

Figure 1: A typical 3-tier enterprise web application

mailto:info%40fortanix.com?subject=
https://fortanix.com/blog/2018/12/how-to-protect-your-applications-on-public-and-private-clouds-using-fortanix-rte/
https://fortanix.com/products/runtime-encryption/
https://fortanix.com/intel-sgx/
https://www.fortanix.com

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 2 / 7

Certificate Issuing

Intel® SGX
Attestation
Verification

Frontend Application Logic Database Storage

Encrypted File System

At rest
Transit

Runtime

Intel Attestation
ServiceOrganization CA

Enclave Manager

TLS TLS TLS

Figure 2: Enterprise 3-tier application secured with Fortanix Runtime Encryption

Fortanix provides a runtime environment for applications,
which implements some of the functionality traditionally
provided by OS kernel in user space, thus enabling the
applications to run unmodified in a secure execution
environment. The secure execution environment uses
encryption and hardware-enforced security isolation to
make applications in this environment completely immune
to a wide-range of threats originating in traditional host
software including root users, network intruders, malicious
insiders, code-injection, cold-boot attacks, and OS zero-day
bugs. This is done by establishing a root of trust in the CPU
itself and using that to encrypt all the system memory and
all other sensitive IO accesses.

2. Enclave OS

2.1 EnclaveOS Architecture

EnclaveOS uses Intel® SGX to create a secure execution
environment. A region of memory is created that is
inaccessible to any process, regardless of its privilege level,
other than the application itself. All the code and data
used by the application is stored in this protected region
of memory encrypted with a key. This key is never stored in
any persistent storage and is not even present in the RAM.
The CPU derives the key on the fly based on a secret already
provisioned in the CPU. As the CPU derives the key and
performs encryption and decryption of memory without
using any support from any of the software (operating
system, SMM, BIOS, hypervisor, etc.), the application
remains protected even from these higher-privileged
processes.

The application, the required language runtime (e.g., JVM),
and EnclaveOS are bundled together.

EnclaveOS is the Runtime Encryption environment that goes
with every application as shown in Figure 3. The application
does not need to be modified.

Node Enrollment

TLS Cert Provisioning

Remote Attestation

App

Runtime
(e.g, JVM)

Enclave OS

Enclave
Manager

Client

OS

Encrypted File System

Libraries

System Call Interface

Intel® SGX Enclave

Figure 3: Application running on EnclaveOS

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 3 / 7

Figure 4: Key hierarchy for storage and network encryption

Network

DRAM

System Storage
TLS

Enclave Software AES

KDF

KDF

CPU

Base Memory
Encryption Key

Memory
Encryption Key

Base Data
Seal Key

Base Data
Seal Key

Data
Seal Key

App
TLS Key AES Encryption App

TLS Key

EnclaveOS encrypt all data which may get written out to the
memory (DRAM), to system storage, and to the network.

Figure 4 shows the primary keys involved in these encryp-
tion operations. The following keys are used:

For encrypting data written to DRAM:
A memory encryption key is randomly generated by the
processor on every boot and is used by the processor to
encrypt and decrypt Intel® SGX enclave memory. The
memory encryption key is usable only by the hardware.
Enclave software does not have the ability to directly
request encryption or decryption using this key.

For encrypting data written to system
storage:
A data seal key is used for this. A base seal key is fused
into each processor during manufacturing of Intel® SGX-
capable CPU, and is unknown even to Intel®. At runtime,
enclave-specific keys are derived from this base key using a
key derivation function (KDF). The input to the KDF include

the identity of the application and the identity of the
signer. The identity of the application is obtained from the
cryptographic hash of the enclave binary, and the identity
of the signer is obtained from the cryptographic hash of the
public portion of the key used to sign the enclave.

For encrypting data written to network:
The application uses one or more keys to authenticate
itself to network clients, services, or other external entities.
Commonly, these are TLS keys and they are generated by
the application. A TLS key for the application running on
EnclaveOS is present in plaintext only within the secure
enclave. At rest, the TLS key is encrypted with one of the
application’s data sealing keys prior to being stored in
system storage.

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 4 / 7

2.2 System Call Interface

Figure 5: Transparent encryption and integrity protection of memory

CPU in Enclave Context

AES
Decryption Module

in CPU

CPU in User Context

App

Enclave OS

Enclave Pages

User Pages

Encrypted Enclave Memory

Plaintext User Memory

Enclave OS

OS

CPU Cache RAM

2. Read
Enclave Page

4. Write
User Page

5. Read
User Page

3. Encrypt

1. Write (...)

6. Write (...)

AES

EnclaveOS provides a Linux-compatible system call
interface to support running any application designed to
run on Linux. Figure 5 shows an example of how data may
be present in the CPU core, CPU cache, and RAM during
the lifecycle of a single system call. When the application
makes a call to the write() function, the call is intercepted
by EnclaveOS, which fetches the pages required for the
write() call from enclave pages in the CPU cache. Note
that only an enclave process with the CPU running in the
enclave context can access these pages. At this time, the
requested pages may be fetched from the memory or the
swap, in which case, the memory pages will be decrypted
before they are brought to the cache. The data is then
encrypted inside the EnclaveOS, which then writes the
encrypted data to the user (non-enclave) pages in the CPU
cache. Again, this data may be sent out to the RAM or swap
space. The EnclaveOS then makes an outward call (OCall) to
the user (non-enclave) portion of the EnclaveOS , which gets
the pages from the CPU cache, and calls the regular Linux
write() system call.

2.3 Libraries

2.4 Encrypted File System

EnclaveOS provides modified versions of standard libraries
(libc, libm, libpthread, librt, etc.) that invoke EnclaveOS
functions rather than making system calls to the Linux
kernel. These libraries are automatically substituted when
launching dynamically linked applications. Other system
call interception strategies are also supported.

EnclaveOS ensures that the application data is secured not
just in the memory but also when it is written on the disk. It
mounts an encrypted file system with each application such
that application can transparently encrypt all data that gets
written out to the disk. The encryption key is associated with
the application and is protected from all other applications,
including the host operating system. This key is derived
from the data seal key described in Section 2.1.

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 5 / 7

3. Trust model for
communication between
applications

This section describes how communication between
applications running in EnclaveOS is secured. It starts with
a brief review of the standard Linux container security
model. Figure 6 shows a sample container environment
(e.g., Docker or CoreOS). Each container may contain
one or more processes. Processes within a container
can communicate using the usual Linux IPC mechanisms
(pipes, Unix domain sockets, shared memory). Processes
in different containers have more limited communication
options. They can communicate via IP sockets. It is also
possible to bind-mount filesystems from the host into the
container. If the same filesystem is mounted into multiple
containers, they can communicate via files.

Figure 6: Containers in Linux

Process 1 Process 2

Process 3 Process 4

Container B

Process 1 Process 2

Process 3 Process 4

Container A

Host

In the EnclaveOS environment, a container corresponds
to an application manifest and a filesystem image. At
launch, EnclaveOS starts a single process as defined by
the container’s entry point definition. That process may
in turn launch other processes. Processes launched in the
context of a single EnclaveOS application manifest (i.e. a
single container) are assumed to cooperatively implement
the functionality of a single application. The EnclaveOS
platform does not cryptographically isolate different
processes belonging to a single application.

The identity of an EnclaveOS application is determined by
the hash of the application image. The manifest is part of

the application image. By placing the initial filesystem hash
in the manifest, the filesystem is also part of the application
identity. Processes launched from the same application
manifest share the same identity, and are thus able to derive
the same keys. Communication between processes in the
same EnclaveOS application (i.e. in the same container) is
secured using these shared keys.

Processes launched by different EnclaveOS applications
(i.e. in different containers) are assumed by the EnclaveOS
platform to be mutually distrusting. The applications have
different identities, and thus one application is not able to
derive the other’s keys. Typically, communication between
two different applications is via a mechanism like TLS. This
is facilitated in Fortanix Runtime Encryption environment
by Enclave Manager, which is described in the next section.

To enable IPC between different applications, the trust
relationships must be manually specified. For example,
the manifest for application/container A can specify that
it wants to share a filesystem with application B, and that
it wants to create shared memory with application C. If
the manifests for applications B and C also specify that
they want to share these resources with application A,
the applications can establish secure channels using DH
key exchange authenticated by the application identity
at runtime. The encryption keys for filesystems and
shared memory are exchanged over these channels. The
EnclaveOS platform does not currently provide revocation
for these trust arrangements. Since shared memory is
inherently volatile, it is enough to release new versions of
the applications without the trust specifications. When the
applications are restarted, the new versions will no longer
allow exchange of shared memory encryption keys.

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 6 / 7

4. Enclave Manager

Fortanix Enclave Manager is a management and
orchestration software which is useful for provisioning SGX
capable machines and SGX applications, and for managing
trust relationships between them.

Figure 7 shows the trust relationships involved in
provisioning keys to the application. The purpose of the
provisioning flow is to ensure that application keys are
provisioned only to genuine instances of the application
running in the Intel® SGX environment. Figure 7 illustrates
the relationships between the following entities:

The Application Node, which is the compute node running
the application.

An Attestation Service. The Enclave Manager queries
the attestation service to verify attestations produced by
application nodes, in order to confirm that the nodes are
genuine. This is typically the Intel® Attestation Service.

4.1 Enclave Manager Architecture

A Certificate Authority, which issues TLS certs used to
authenticate applications to other services in the deployed
environment. This is typically a component of the Enclave
Manager, but can also be an organization’s CA.

The Fortanix Quoting and Provisioning Enclave (FQPE),
which is a Fortanix-provided enclave service that runs on
each application node. The FQPE manages a node private
key, and has a role in the attestation process.

Figure 7: Trust Relationships in Enclave Manager

Private CA

CA-Pr

ZA-Pu

Application Node

CA-Pu

App-Pr

Intel® Attestation Service

AS-Pr

N-Pr

SGX Local Attestation

Application FQPE

Enclave Manager

ZA-Pr

AS-Pu

N-Pr

Enclave Manager FQPE

4.2 Node Enrollment

This is a one-time action for every Application Node.
Before any Application Node runs, it must be enrolled into
Enclave Manager. The Application Node sends an attestation
to Enclave Manager, which verifies the attestation with the
Intel® Attestation Service to confirm that the Application
Node is a genuine Intel® SGX machine. Once this has been
confirmed, the Enclave Manager can provision a secret with
FQPE such that the future requests for attesting EnclaveOS
applications can be satisfied by the Enclave Manager,
and there is no further need to contact Intel® for future
attestations.

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2019 Fortanix Inc. Page 7 / 7

4.3 Application Whitelisting

4.4 TLS certificate provisioning

Enclave Manager can whitelist EnclaveOS applications. The
enclave related properties of the application are included for
the application while whitelisting. This includes the identity
or hash of the enclave (MRENCLAVE), identity of the signer
of the enclave (MRSIGNER), product identifier (ISVPRODID),
security version number (ISVSVN). When the enclave runs
and presents its attestation to the Enclave Manager, all of
these values are included in the attestation report, which
can be used by the Enclave Manger to determine whether
to accept the attestation.

The Certificate Authority issues TLS certs to EnclaveOS
applications on verifying their remote attestation signed
by the FQPE. The attestation step can be added either
manually or automatically in an existing private CA, or using
Enclave Manager to issue TLS certificates. Applications can
use this TLS certificate as a server certificate (e.g., web
servers, databases, etc.), or a client certificate, or both.

Securing applications using Fortanix Runtime
Encryption Platform:

On installation, IBM Cloud Data Shield instantiates the
Enclave Manager. As an immediate first step, the worker
nodes which form the Kubernetes cluster in IKS are enrolled
into the Enclave Manager. These nodes, along with their SGX
attestation information, can be viewed in the web console
of Enclave Manager.

To run an application on IBM Cloud Data Shield, a container
conversion tool is provided to convert an existing Docker
container image into an SGX capable container image. This
inserts EnclaveOS into the Docker container image and sets
the required parameters to run the original application
on EnclaveOS. The modified container image can now be
whitelisted with Enclave Manager. After whitelisting, the
container can be launched using standard Kubernetes
interface. Enclave Manager can verify attestation and issue
TLS certificates that can be used by the application.

For more details, please visit
https://www.ibm.com/cloud/data-shield

or send us an email at
support@fortanix.com

or join our Runtime Encryption® forum on Slack at
https://fortanix.com/runtime-encryption-slack

Fortanix Runtime Encryption Platform is currently available
as IBM Cloud Data Shield, a service running on IBM Cloud.
This service runs on top of IBM Kubernetes Service (IKS),
and thus supports running applications as containerized
services.

Figure 8: One-click integration of container images to run on EnclaveOS™

1. Bring your Container based Apps 2. Convert to RTE protected Container 3. Deploy on any SGX Server

Containers Custom Apps Kubernetes

Connect with us

Twitter Facebook SlackLinkedIn

mailto:info%40fortanix.com?subject=
https://www.ibm.com/cloud/data-shield
mailto:support%40fortanix.com?subject=Support
https://www.ibm.com/cloud/data-shield
https://twitter.com/fortanix
https://www.facebook.com/fortanix/
https://fortanix.com/runtime-encryption-slack
https://www.linkedin.com/company/fortanix/

