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Side Channels and Runtime Encryption 
Solutions with Intel® SGX

Fortanix®, the leader in Runtime Encryption, has received 
numerous inquiries about the impact of side channel 
attacks on Fortanix’s solutions and more generally on 
Intel® SGX. This white paper briefly explains side channel 
attacks, then discusses some specific side channel attack 
techniques in the context of SGX and ways of defending 
against those attacks.

It is important to be aware that side channels exist in any 
digital system, not just SGX. The interest in side channels 
attacks in the context of SGX arises because many kinds of 
attacks that are possible in conventional computing envi-
ronments are no longer possible in SGX, leaving side chan-
nel attacks as one of few remaining attack vectors. Several 
factors that are not always discussed in academic literature 
can make it infeasible or extremely difficult to mount a side 
channel attack in a practical setting.

This paper also describes various defenses used by 
the Fortanix Self-Defending Key Management Service™ 
(SDKMS) and by Fortanix Runtime Encryption solutions to 
protect against side channel attacks. Fortanix leverages its 
considerable hardware-based security, side-channel, and 
cryptography expertise to deliver Runtime Encryption solu-
tions that ensure data remains protected even when in use.

This paper is intended for an audience that is generally 
familiar with processor architecture and Intel® SGX tech-
nology. Familiarity with side channel attacks is helpful but 
is not assumed.

A side channel attack is a way to extract sensitive informa-
tion from a system by some means other than the intended 
input and output channels. A conventional attack on the 
security of a digital system might work by supplying mali-
cious input that, due to a logical error in the implementation 
of the system, results in sensitive data being included with 
the output. In contrast, a side channel attack might look at 
a property like the response time of the system and deter-
mine secret information based on changes in the response 
time. A side channel attack is like the digital equivalent of a 
safecracker using a sensitive listening device to determine 
the state of mechanical components in a lock. The sensitive 
information gleaned by a side channel attack is known as 
side channel leakage, and the system subject to the attack 
is said to leak side channel information. A side channel 
leakage can take many forms, including variation in the time 
taken by the system to process different inputs, variation in 
the electrical activity of a circuit when processing different 
inputs, electromagnetic emissions from a circuit, and even 
sound emitted from a cryptographic device. In addition to 
monitoring side channel leakage, the attacker may supply 
the system with chosen inputs, or otherwise tamper with 
the operation of the system to maximize the utility of the 
leakage.

Side channel attacks are commonly described in the context 
of cryptographic systems, where the leaked information is 
a cryptographic key. In this paper, we consider a more gen-
eral definition that includes leakage of any kind of sensitive 
information.
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Example

As a simple example of a side channel attack, consider 
a system that verifies whether an entered password  
is correct.

A naïve implementation may use a function like strcmp to 
test whether the entered password is equal to the correct 
password. The strcmp implementation may stop processing 
the input upon finding the first incorrect character. When 
the first character of the entered password is incorrect, the 
system will immediately report that the password is incor-
rect. When the first character of the entered password is 
correct, the system will take slightly longer to report that 
the password is incorrect. By watching carefully for this dif-
ference in response time, an attacker can try each possible 
first character in turn until the correct one is found, then try 

each second character in turn until the correct one is found, 
and so on. Eventually the attacker will have determined the 
correct password, using many fewer guesses than it would 
take to try all possible passwords.
A side channel resistant implementation might use a func-
tion that compares passwords in constant time regardless 
of the entered password. One way of accomplishing this is 
comparing the hash of the strings rather than comparing 
the raw strings. Comparing the hashes ensures that attacker 
cannot determine the position of the first mismatch.

bool check_password1 (const uint8_t * supplied, 
           const uint8_t * correct, 
           size_t len)
{
    for (size_t i = 0; i < len; i++) {
          if (supplied[i] != correct[i])
                    return false;
    }
    return true;

}

bool check_password2 (const uint8_t * supplied, 
          const uint8_t * correct, 
           size_t len)
{
    uint8_t x = 0;

    for (size_t i = 0; i < len; i++)
        x |= supplied[i] ^ correct[i];

    return (x == 0);
        
}
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In the case of digital computation, a side channel can exist 
when execution of a program modifies externally-visible 
state, outside of explicit inputs and outputs to the program 
[1]. Thus, side channels can be organized by the resource(s) 
used to construct the channel. The password comparison 
example above is often called a timing side channel, where 
a secret can be inferred based on the execution time of the 
application.

In the context of cloud computing, a primary concern is 
side channels that exist in hardware shared by co-resident 
virtual machines or processes. Most proof-of-concept side 
channel attacks in the cloud environment infer secrets 
based on changes to shared hardware caches [2], [3]. The 
caches are part of the CPUs memory subsystem, so these 
attacks are classified as using a memory side channel. 

Another side channel used in SGX attacks [4] is the branch 
predictor side channel. The CPU’s branch predictor holds 
information about observed branch behavior and thus may 
reveal control flow within an enclave.

A successful side channel attack requires the following key 
ingredients in the target:

Ingredient 1 
The side channel itself, meaning a resource like the ones 
above, shared by attacker and target.

Ingredient 2 
Secret-dependent, externalized behavior. For example, 
a branch decision (if/else statement) may depend on the 
value of a secret and the two sides of the branch have dif-
ferent impact on the resource in the previous ingredient.

Ingredient 3 
Sufficient measurement precision and volume. Because 
many unrelated operations can also affect the shared 
resource, the attacker needs to be able to measure the side 
channel leakage with enough accuracy to recover useful 
information. 

Most strategies for preventing against side channel attacks 
try to disable one or more of the key ingredients above. 
Here, we summarize a few of the major families of defenses.

Defense 1 
Removing secret-dependent behavior. An example is remov-
ing secret-dependent branches from code, instead comput-
ing results from both sides of the branch and selecting the 
correct output at the end. Another option is to ensure that 
both sides of a branch have equivalent impact, for example 
by ensuring that both branches touch the same cache lines 
or virtual addresses, thereby making page faults or cache 
behavior indistinguishable. For timing channels, some 
defenses have set an expected execution time and always 
execute for this period, even if not doing useful work. Other 
defenses terminate after a fixed interval even if the compu-
tation is not finished.

Defense 2 
Hiding secret-dependent behavior. Most successful side 
channel attacks require careful analysis of the target to find 
and characterize the side channel leakage. Although not a 
perfect defense, keeping the details of the target (e.g. the 
application binary) secret from the attacker can raise the 
difficulty of a successful side channel attack. In principle, 
randomized compilation or other techniques that randomly 
perturb control flow may work, however, correct implemen-
tation is difficult. Strategies like the out-of-the-box address 
space layout randomization (ASLR) in modern operating 
systems are too coarse to eliminate side channels [5], [6].

Sources of Side Channels and 
Mitigation Strategies

Ingredients in a Side Channel Attack

Mitigation Strategies

For instance, in the simple password checker example 
above, it is relatively easy to measure the execution time of 
the password comparison executed in isolation. 
In a larger application, such as a database or web server, 
separating the time spent on password checking logic from 
other operations like establishing a connection or spinning 
up a worker thread can be more difficult. In the presence 
of measurement noise, the attacker may need to make a 
larger number of measurements to mount the attack suc-
cessfully, which increases the chance of detection.
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Defense 3 
Making the victim sensitive to measurements of side chan-
nel leakage. When an attacking process is measuring a side 
channel leakage in a shared resource, the measurement 
itself can affect the victim. In the shared cache example 
above, execution of measurement code will itself perturb 
the victim’s cache behavior, and consequently its execu-
tion time. Thus, some defenses have the victim measure its 
own timing, and cease execution if an attack is suspected 
[7].the attack successfully, which increases the chance of 
detection.

Security researchers recently announced the discovery of 
Meltdown and Spectre [8], [9]. Meltdown and Spectre are 
side-channel vulnerabilities affecting CPUs. The vulnerabil-
ities arise from the speculative execution functionality in 
modern high-performance CPUs. Unlike early CPUs, which 
executed a sequence of machine instructions one by one, 
modern CPUs may speculatively begin processing subse-
quent instructions while a previous instruction is still in 
flight. If the previous instruction fails, the CPU must ensure 
that the machine state exposed to software does not reflect 
any effects of the speculatively executed instructions. The 
Meltdown and Spectre vulnerabilities arise because a pro-
cess can cause the CPU to speculatively access data that the 
process should not have access to. The CPU will not expose 
the data to the process directly, but the process may be 
able to recover the speculatively
accessed data via a side channel. Spectre and Meltdown are 
a reminder of the ubiquity of side channels, and that side 
channels exist everywhere, not just in SGX or in any other 
single environment.

Meltdown and Spectre

Intel® Software Guard Extensions provide a protected exe-
cution environment within an x86 CPU that significantly 
reduces the attack surface for code running in that environ-
ment. Using the SGX instructions, an application can create 
a private region of memory that is isolated from all other 
processes, even those with higher privilege levels. Thus, 
even if a malware or an insider has access to operating 
system (OS) root privileges, or if the hypervisor or BIOS are 
compromised, the SGX-protected software can still operate 
with integrity and be able to help protect both its code and 
data.

Traditionally, x86 architecture follows a hierarchical privi-
lege mode with various software components operating at 
different privilege levels. Less privileged software compo-
nents have no privacy from processes with greater privi-
lege. SGX enables programmers to create a stand-alone 
execution environment for applications. This environment, 
called an enclave, operates with a private region of system 
memory that the CPU makes available only to the enclave. 
No other software component, not even those running with 
higher privilege level, can access the enclave memory. The 
software trust boundary of an enclave is exactly the bound-
ary of the enclave. Other software on the host, and system 
administrators with access to the host, are outside the trust 
boundary.

Intel® SGX enables the processor hardware to serve as the 
root of trust for software executing in SGX enclaves. This 
creates an execution environment secure against snoop-
ing or tampering by compromised local system software 
or a malicious privileged user. Data in enclave memory is 
transparently encrypted by the CPU prior to being written 
to DRAM. The processor security hardware enforces that 
only the enclave, and not any other software, can access 
this memory.

SGX also provides attestation functionality. This functional-
ity enables a remote party to verify the integrity of enclave 
software by examining a cryptographic proof (the attesta-
tion). Attestations are issued by the processor hardware 
itself, thus protecting the attestation process from soft-
ware attacks of any sort.

Introduction to Intel® SGX

Promise of Intel® SGX
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By combining encryption of data in use with attestation, 
SGX offers secure computation in an untrusted environ-
ment, without exposing the data being operated upon.

However, the ultimate strength of any secure system 
depends on many factors. Nearly any x86 code can be run 
in an SGX enclave. To achieve a truly secure system, the 
design, implementation, and testing of code running in an 
enclave is critically important. An error such as a buffer 
overflow in an enclave application may leave the enclave 

vulnerable despite all the security protections afforded by 
the SGX platform. Enclave applications must conform to 
general secure coding principles as well as security consid-
erations specific to SGX. As discussed in the Intel® Software 
Guard Extensions Developer Guide [10], the SGX platform 
does not automatically render applications resistant to side 
channel attacks. To avoid side channel vulnerabilities in 
their applications, developers must exercise great care in 
the design and implementation of their application.

Untrusted 
Environment

Untrusted 
Environment

OS

Attack

Intel® SGX

The vulnerability of enclave software to side channel 
attacks depends greatly on details of the software imple-
mentation. Cryptographic primitives are easier to protect, 
because they tend to have regular structure and are rela-
tively limited in complexity and scope. Enclave applications 
that make use of large memory data structures are harder 
to protect, because the memory access pattern may leak 
information. The SGX platform does not natively protect 
against this kind of leakage, however, there is research into 
implementing protection on top of SGX [11].

Timing side channels apply to SGX enclaves. The nature of 
the timing side channel in an enclave application will in most 
cases be the same as it would be in a non-enclave version of 
the same application. For example, an attack that measures 
response time to network requests is not unique to the 
enclave environment. In the case of timing side channels, 
similar design strategies and countermeasures can be used 
in either case to provide resistance to this type of attack.

Side Channels Applicable to SGX Enclaves Timing Side Channels
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key_byte

SGX enclaves have been shown to be vulnerable to memory 
side channel attacks. This can be the same as the cache side 
channel that exists more generally in applications running 
on a shared processor, or there are some variants tailored 
to SGX. Memory access side channels are exploitable when 
the memory access pattern depends on sensitive data. An 
example is a cryptographic algorithm with a key-dependent 
lookup table. If the side channel reveals which part of the 
lookup table is accessed, an attacker can make some con-
clusion about the secret key.

Several forms of memory side channel attacks on SGX 
have been demonstrated. One method generates cache 
accesses in untrusted code that reveal which cache lines 
are accessed by the enclave. Alternately, an the attack may 
use the ability of the untrusted OS to control SGX paging to 
identify which memory page(s) are being accessed by the 
enclave [5]. The untrusted OS is responsible for swapping 
enclave pages from their primary storage, the enclave page 
cache (EPC), to secondary storage (other RAM or disk) when 
necessary. 

A final class of side channel that has been shown to apply to 
SGX enclaves is the CPU’s branch prediction hardware. The 
purposes of the branch predictor is to record information 
about recently seen branches so that the CPU may more 
accurately guess the result of future conditional or indi-
rect branches. Aspects of the branch predictor are shared 
between enclave and non-enclave processes, which may 
allow the non-enclave process to infer secret-dependent 
control flow in the enclave [4].

Memory Side Channels

Branch Predictor Side Channels

The OS can swap out enclave pages and then monitor page 
faults from within the enclave to determine which pages the 
enclave is accessing. A third method modifies the second 
by monitoring tracking information in the OS page tables 
to determine which pages the enclave is accessing without 
inducing page faults [6].
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Literature claiming to have found a vulnerability must be 
evaluated in the context of the threat model. Although 
some SGX papers treat side channels as out of scope, all 
SGX work adopts a worst-case threat model where the 
OS or hypervisor has already been compromised. Papers 
targeting scenarios other than SGX may assume a weaker 
threat model, such as assuming the hypervisor has not 
been compromised. The choice of threat model in a formal 
security analysis has no bearing on the actual probability 
of an OS or hypervisor compromise, or a malicious cloud 
provider. In practice, using SGX places you at no more at 
risk of a compromised OS or hypervisor than not using SGX. 
However, assuming an OS or hypervisor is compromised, 
the SGX adversary is limited to searching for and using side 
channels to extract information, unlike the non-SGX adver-
sary, who upon compromising the OS may immediately 
read sensitive information from application memory. There 
is no evidence to suggest that moving an application to SGX 
makes it more vulnerable to side channel attacks than it 
already was.

In the general cloud computing case, a straightforward but 
potentially costly countermeasure is to avoid sharing hard-
ware resources between code with different trust levels (i.e. 
code belonging to different cloud tenants), thus removing 
potentially malicious processes from a position where they 
can mount an attack. However, a goal of SGX is to provide 
security even when inherently co-located components like 
the OS or hypervisor are not trusted. A compromised OS or 
hypervisor has control over scheduling, timing, and most 
shared resources (ingredient #3). 
Although the processor’s built-in single-step mechanism 
is disabled while running enclaves, the OS can use system 
resources like high-precision timers to schedule enclave 
operations at near-single-step frequency [12]. This allows 
an attacker with control over the OS to collect nearly noise-
free information about memory accesses by the enclave.

However, the privileged position of the attacker matters 
only if a vulnerability exist. Side channels are unavoidable, 
but a well-designed application can ensure that they do not 
carry sensitive information. Several works demonstrating 
memory side channel attacks on cryptographic algorithms 
in SGX enclaves have targeted well-known cryptographic 
libraries (e.g. OpenSSL, mbedTLS, GnuTLS) that can be 
run either inside of outside of an enclave. In some cases, 
the implementations targeted by the attack have known 
weaknesses that exist independent of whether it runs in an 
enclave or not [4], [13]. In one case, a new vulnerability was 
found, but the vulnerability applies generally to the cryp-
tographic library, not specifically to SGX [14].
Most security literature defines a threat model, which expli-
cates how strong of an adversary the defense will resist 
(or how much power the attacker requires to succeed). 

Discussion
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This section describes some strategies for protecting applications from side channel attacks. It follows the families of defenses 
discussed earlier.

The most direct and robust strategy to protect against side 
channel attacks is to remove secret-dependent behavior 
that may leak through the side channel. This can be applied 
to the case of memory side channels (in SGX, or in gen-
eral) by ensuring the program exhibits the same pattern 
of memory accesses regardless of the data being operated 
upon. For example, the code on both sides of an if/else con-
ditional would be placed in the same cache line. Similarly, 
any data access with indirect addressing that could span 
more than one cache line would need to be replicated such 
that all cache lines are accessed regardless of the lookup 
index [6], [13].
Another strategy that removes secret-dependent behav-
ior is using machine-intrinsic cryptographic instructions, 
rather than software implementations, wherever possi-
ble. Machine instructions are likely to be implemented in a 
manner that is free of timing side channels. This is the case 
for Intel’s AES-NI instructions.

Protection Against Side Channel Attacks

Removing Secret-dependent Behavior

key_byte & 0x3F key_byte >> 6

In several of the cases where memory side channels have 
been used to attack an enclave, the attack works because 
it can determine which entry in an array or hash table is 
being accessed. A simple countermeasure is to utilize ran-
domized hashing. This is a good idea in many networked 
applications, whether running in SGX or not, to defend 
against denial-of-service attacks where an attacker supplies 
inputs chosen to produce hash collisions. Hashes and other 
randomized data structures should be periodically rebuilt 
with different randomization, to prevent an attacker from 
collecting sufficient observations of the structure to infer 
the location of any particular data.
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One technique for hiding secret-dependent behavior is 
to deliver the enclave code in encrypted form. The only 
plaintext code in the enclave image would be a minimal 
loader, responsible for decrypting the rest of the applica-
tion. Protecting the enclave image from inspection makes it 
much more difficult for an attacker to reverse-engineer the 
enclave code to identify exploitable side channel leakage. 
An advantage of this countermeasure is that it does not 
require modifying the runtime application code.

A technique that hides the secret-dependent behavior 
accessible via the page fault side channel is to enforce the 
use of large pages for enclave memory, greatly reducing the 
resolution of the side channel [17].

Several techniques have been proposed to make enclaves 
sensitive to the side channel leakage measurements. One 
strategy uses transactional memory [15], [16]. Traditional 
locking protects against conflicting simultaneous access to 
a resource by having each task hold a “lock” for the duration 
of the operation. With transactional memory, an applica-
tion may designate certain memory operations as belong-
ing to an atomic transaction. The transaction can either 
complete, in which case all the operations in the transaction 
will be visible to other tasks, or the transaction may “abort”, 
and none of the operations will be visible to other tasks. In 
the case of an aborted transaction, the important result is 
that none of the memory operations that might normally 
expose side channel information are applied to the shared 
memory resource. Transactional memory is useful for pro-
tecting SGX applications because common measurement 
techniques like forcing a page fault also causes any trans-
action referencing those pages to abort. When an enclave 
observes too many aborts that indicate a likely attack, the 
enclave can refuse to run, lest it potentially leak confidential 
data. To deploy this countermeasure, an application must 
be recompiled with suitable transactions inserted into the 
program code.

A variation of the transactional memory protection updates 
a counter within a transaction, to detect when the enclave 
has been suspended. This requires less extensive analysis 
of the enclave program than protection using transactions 
alone, but incurs an overhead to maintain the counter [7].

Hiding Secret-dependent Behavior

Making Enclaves Timing Sensitive

Fortanix Self-Defending Key Management Service™ 
(SDKMS), secured with Intel® SGX, delivers unified key man-
agement and hardware security module (HSM) capabilities.

In the Fortanix SDKMS, all cryptographic algorithms are 
hardened against side channel attacks. Varying protection 
strategies are used for different algorithms:

•	 Use of hardware-intrinsic cryptographic instructions 
that exhibit the same memory access and timing char-
acteristics regardless of input data.

•	 Manual alignment of critical lookup tables to fit entirely 
within a cache line, so that secret-dependent access 
to the lookup table does not leak via side channels. 
When lookup tables do not fit within a cache line, mul-
tiple tiered lookup tables or masking is employed to 
ensure that the conditional probability of any external-
ly-observable memory access is the same for all secret 
values.

•	 Blinding of large integers so that the actual values 
computed by any big-integer arithmetic oper-
ation do not correlate with any secret value. 

When appropriate, non-cryptographic algorithms are also 
protected against side channel attacks. For example:

•	 The time taken to verify passwords and API keys is 
ensured to be independent of the secret password or 
API key.

•	 Processing of potentially sensitive data (e.g. decoding 
REST API input data) employs algorithms that do not 
leak information.

Fortanix Runtime Encryption solutions protect applications 
and their data in use. Within Fortanix’s Runtime Encryption 
solutions, cryptographic primitives internal to the library 
are protected using techniques similar to those used 
 in SDKMS.

Side Channel Defenses  
in Fortanix Solutions
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Side channel attacks are a very real concern in any digital system that operates on sensitive data. As with many aspects of digital 
security, new attacks are continually under development, and systems must be constantly updated to remain secure. SGX offers 
the power to run most x86 applications in an enclave, protect applications’ data against unauthorized memory reads. To ensure 
that enclaves are secure in practice, great care is needed, including the care to avoid leaking secrets through side channels. 
Recently published literature identifies side channels that are present in the SGX technology, but whether there is information 
available from the side channel and whether the side channel is accessible to an attacker are properties of each application and 
deployment, and not of SGX itself. Fortunately, applications can use countermeasures to control these parameters. Fortanix 
solutions have been designed with various defenses, leveraging expertise in hardware-based security and cryptography, to 
protect against side channel attacks. The security experts at Fortanix have significant experience dealing with side channels and 
are happy to help identify appropriate solutions to your security challenges.

Conclusion
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