
info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 1 / 11

Side Channels and Runtime Encryption
Solutions with Intel® SGX

Fortanix®, the leader in Runtime Encryption, has received
numerous inquiries about the impact of side channel
attacks on Fortanix’s solutions and more generally on
Intel® SGX. This white paper briefly explains side channel
attacks, then discusses some specific side channel attack
techniques in the context of SGX and ways of defending
against those attacks.

It is important to be aware that side channels exist in any
digital system, not just SGX. The interest in side channels
attacks in the context of SGX arises because many kinds of
attacks that are possible in conventional computing envi-
ronments are no longer possible in SGX, leaving side chan-
nel attacks as one of few remaining attack vectors. Several
factors that are not always discussed in academic literature
can make it infeasible or extremely difficult to mount a side
channel attack in a practical setting.

This paper also describes various defenses used by
the Fortanix Self-Defending Key Management Service™
(SDKMS) and by Fortanix Runtime Encryption solutions to
protect against side channel attacks. Fortanix leverages its
considerable hardware-based security, side-channel, and
cryptography expertise to deliver Runtime Encryption solu-
tions that ensure data remains protected even when in use.

This paper is intended for an audience that is generally
familiar with processor architecture and Intel® SGX tech-
nology. Familiarity with side channel attacks is helpful but
is not assumed.

A side channel attack is a way to extract sensitive informa-
tion from a system by some means other than the intended
input and output channels. A conventional attack on the
security of a digital system might work by supplying mali-
cious input that, due to a logical error in the implementation
of the system, results in sensitive data being included with
the output. In contrast, a side channel attack might look at
a property like the response time of the system and deter-
mine secret information based on changes in the response
time. A side channel attack is like the digital equivalent of a
safecracker using a sensitive listening device to determine
the state of mechanical components in a lock. The sensitive
information gleaned by a side channel attack is known as
side channel leakage, and the system subject to the attack
is said to leak side channel information. A side channel
leakage can take many forms, including variation in the time
taken by the system to process different inputs, variation in
the electrical activity of a circuit when processing different
inputs, electromagnetic emissions from a circuit, and even
sound emitted from a cryptographic device. In addition to
monitoring side channel leakage, the attacker may supply
the system with chosen inputs, or otherwise tamper with
the operation of the system to maximize the utility of the
leakage.

Side channel attacks are commonly described in the context
of cryptographic systems, where the leaked information is
a cryptographic key. In this paper, we consider a more gen-
eral definition that includes leakage of any kind of sensitive
information.

Whitepaper
Leader in Runtime Encryption

Executive Summary
Introduction to Side Channel
Attacks

by Andy Leiserson, Chief Architect at Fortanix

mailto:info%40fortanix.com?subject=
https://www.fortanix.com/
https://www.linkedin.com/in/andyleiserson/

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 2 / 11

Example

As a simple example of a side channel attack, consider
a system that verifies whether an entered password
is correct.

A naïve implementation may use a function like strcmp to
test whether the entered password is equal to the correct
password. The strcmp implementation may stop processing
the input upon finding the first incorrect character. When
the first character of the entered password is incorrect, the
system will immediately report that the password is incor-
rect. When the first character of the entered password is
correct, the system will take slightly longer to report that
the password is incorrect. By watching carefully for this dif-
ference in response time, an attacker can try each possible
first character in turn until the correct one is found, then try

each second character in turn until the correct one is found,
and so on. Eventually the attacker will have determined the
correct password, using many fewer guesses than it would
take to try all possible passwords.
A side channel resistant implementation might use a func-
tion that compares passwords in constant time regardless
of the entered password. One way of accomplishing this is
comparing the hash of the strings rather than comparing
the raw strings. Comparing the hashes ensures that attacker
cannot determine the position of the first mismatch.

bool check_password1 (const uint8_t * supplied,
 const uint8_t * correct,
 size_t len)
{
 for (size_t i = 0; i < len; i++) {
 if (supplied[i] != correct[i])
 return false;
 }
 return true;

}

bool check_password2 (const uint8_t * supplied,
 const uint8_t * correct,
 size_t len)
{
 uint8_t x = 0;

 for (size_t i = 0; i < len; i++)
 x |= supplied[i] ^ correct[i];

 return (x == 0);

}

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 3 / 11

In the case of digital computation, a side channel can exist
when execution of a program modifies externally-visible
state, outside of explicit inputs and outputs to the program
[1]. Thus, side channels can be organized by the resource(s)
used to construct the channel. The password comparison
example above is often called a timing side channel, where
a secret can be inferred based on the execution time of the
application.

In the context of cloud computing, a primary concern is
side channels that exist in hardware shared by co-resident
virtual machines or processes. Most proof-of-concept side
channel attacks in the cloud environment infer secrets
based on changes to shared hardware caches [2], [3]. The
caches are part of the CPUs memory subsystem, so these
attacks are classified as using a memory side channel.

Another side channel used in SGX attacks [4] is the branch
predictor side channel. The CPU’s branch predictor holds
information about observed branch behavior and thus may
reveal control flow within an enclave.

A successful side channel attack requires the following key
ingredients in the target:

Ingredient 1
The side channel itself, meaning a resource like the ones
above, shared by attacker and target.

Ingredient 2
Secret-dependent, externalized behavior. For example,
a branch decision (if/else statement) may depend on the
value of a secret and the two sides of the branch have dif-
ferent impact on the resource in the previous ingredient.

Ingredient 3
Sufficient measurement precision and volume. Because
many unrelated operations can also affect the shared
resource, the attacker needs to be able to measure the side
channel leakage with enough accuracy to recover useful
information.

Most strategies for preventing against side channel attacks
try to disable one or more of the key ingredients above.
Here, we summarize a few of the major families of defenses.

Defense 1
Removing secret-dependent behavior. An example is remov-
ing secret-dependent branches from code, instead comput-
ing results from both sides of the branch and selecting the
correct output at the end. Another option is to ensure that
both sides of a branch have equivalent impact, for example
by ensuring that both branches touch the same cache lines
or virtual addresses, thereby making page faults or cache
behavior indistinguishable. For timing channels, some
defenses have set an expected execution time and always
execute for this period, even if not doing useful work. Other
defenses terminate after a fixed interval even if the compu-
tation is not finished.

Defense 2
Hiding secret-dependent behavior. Most successful side
channel attacks require careful analysis of the target to find
and characterize the side channel leakage. Although not a
perfect defense, keeping the details of the target (e.g. the
application binary) secret from the attacker can raise the
difficulty of a successful side channel attack. In principle,
randomized compilation or other techniques that randomly
perturb control flow may work, however, correct implemen-
tation is difficult. Strategies like the out-of-the-box address
space layout randomization (ASLR) in modern operating
systems are too coarse to eliminate side channels [5], [6].

Sources of Side Channels and
Mitigation Strategies

Ingredients in a Side Channel Attack

Mitigation Strategies

For instance, in the simple password checker example
above, it is relatively easy to measure the execution time of
the password comparison executed in isolation.
In a larger application, such as a database or web server,
separating the time spent on password checking logic from
other operations like establishing a connection or spinning
up a worker thread can be more difficult. In the presence
of measurement noise, the attacker may need to make a
larger number of measurements to mount the attack suc-
cessfully, which increases the chance of detection.

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 4 / 11

Defense 3
Making the victim sensitive to measurements of side chan-
nel leakage. When an attacking process is measuring a side
channel leakage in a shared resource, the measurement
itself can affect the victim. In the shared cache example
above, execution of measurement code will itself perturb
the victim’s cache behavior, and consequently its execu-
tion time. Thus, some defenses have the victim measure its
own timing, and cease execution if an attack is suspected
[7].the attack successfully, which increases the chance of
detection.

Security researchers recently announced the discovery of
Meltdown and Spectre [8], [9]. Meltdown and Spectre are
side-channel vulnerabilities affecting CPUs. The vulnerabil-
ities arise from the speculative execution functionality in
modern high-performance CPUs. Unlike early CPUs, which
executed a sequence of machine instructions one by one,
modern CPUs may speculatively begin processing subse-
quent instructions while a previous instruction is still in
flight. If the previous instruction fails, the CPU must ensure
that the machine state exposed to software does not reflect
any effects of the speculatively executed instructions. The
Meltdown and Spectre vulnerabilities arise because a pro-
cess can cause the CPU to speculatively access data that the
process should not have access to. The CPU will not expose
the data to the process directly, but the process may be
able to recover the speculatively
accessed data via a side channel. Spectre and Meltdown are
a reminder of the ubiquity of side channels, and that side
channels exist everywhere, not just in SGX or in any other
single environment.

Meltdown and Spectre

Intel® Software Guard Extensions provide a protected exe-
cution environment within an x86 CPU that significantly
reduces the attack surface for code running in that environ-
ment. Using the SGX instructions, an application can create
a private region of memory that is isolated from all other
processes, even those with higher privilege levels. Thus,
even if a malware or an insider has access to operating
system (OS) root privileges, or if the hypervisor or BIOS are
compromised, the SGX-protected software can still operate
with integrity and be able to help protect both its code and
data.

Traditionally, x86 architecture follows a hierarchical privi-
lege mode with various software components operating at
different privilege levels. Less privileged software compo-
nents have no privacy from processes with greater privi-
lege. SGX enables programmers to create a stand-alone
execution environment for applications. This environment,
called an enclave, operates with a private region of system
memory that the CPU makes available only to the enclave.
No other software component, not even those running with
higher privilege level, can access the enclave memory. The
software trust boundary of an enclave is exactly the bound-
ary of the enclave. Other software on the host, and system
administrators with access to the host, are outside the trust
boundary.

Intel® SGX enables the processor hardware to serve as the
root of trust for software executing in SGX enclaves. This
creates an execution environment secure against snoop-
ing or tampering by compromised local system software
or a malicious privileged user. Data in enclave memory is
transparently encrypted by the CPU prior to being written
to DRAM. The processor security hardware enforces that
only the enclave, and not any other software, can access
this memory.

SGX also provides attestation functionality. This functional-
ity enables a remote party to verify the integrity of enclave
software by examining a cryptographic proof (the attesta-
tion). Attestations are issued by the processor hardware
itself, thus protecting the attestation process from soft-
ware attacks of any sort.

Introduction to Intel® SGX

Promise of Intel® SGX

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 5 / 11

By combining encryption of data in use with attestation,
SGX offers secure computation in an untrusted environ-
ment, without exposing the data being operated upon.

However, the ultimate strength of any secure system
depends on many factors. Nearly any x86 code can be run
in an SGX enclave. To achieve a truly secure system, the
design, implementation, and testing of code running in an
enclave is critically important. An error such as a buffer
overflow in an enclave application may leave the enclave

vulnerable despite all the security protections afforded by
the SGX platform. Enclave applications must conform to
general secure coding principles as well as security consid-
erations specific to SGX. As discussed in the Intel® Software
Guard Extensions Developer Guide [10], the SGX platform
does not automatically render applications resistant to side
channel attacks. To avoid side channel vulnerabilities in
their applications, developers must exercise great care in
the design and implementation of their application.

Untrusted
Environment

Untrusted
Environment

OS

Attack

Intel® SGX

The vulnerability of enclave software to side channel
attacks depends greatly on details of the software imple-
mentation. Cryptographic primitives are easier to protect,
because they tend to have regular structure and are rela-
tively limited in complexity and scope. Enclave applications
that make use of large memory data structures are harder
to protect, because the memory access pattern may leak
information. The SGX platform does not natively protect
against this kind of leakage, however, there is research into
implementing protection on top of SGX [11].

Timing side channels apply to SGX enclaves. The nature of
the timing side channel in an enclave application will in most
cases be the same as it would be in a non-enclave version of
the same application. For example, an attack that measures
response time to network requests is not unique to the
enclave environment. In the case of timing side channels,
similar design strategies and countermeasures can be used
in either case to provide resistance to this type of attack.

Side Channels Applicable to SGX Enclaves Timing Side Channels

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 6 / 11

key_byte

SGX enclaves have been shown to be vulnerable to memory
side channel attacks. This can be the same as the cache side
channel that exists more generally in applications running
on a shared processor, or there are some variants tailored
to SGX. Memory access side channels are exploitable when
the memory access pattern depends on sensitive data. An
example is a cryptographic algorithm with a key-dependent
lookup table. If the side channel reveals which part of the
lookup table is accessed, an attacker can make some con-
clusion about the secret key.

Several forms of memory side channel attacks on SGX
have been demonstrated. One method generates cache
accesses in untrusted code that reveal which cache lines
are accessed by the enclave. Alternately, an the attack may
use the ability of the untrusted OS to control SGX paging to
identify which memory page(s) are being accessed by the
enclave [5]. The untrusted OS is responsible for swapping
enclave pages from their primary storage, the enclave page
cache (EPC), to secondary storage (other RAM or disk) when
necessary.

A final class of side channel that has been shown to apply to
SGX enclaves is the CPU’s branch prediction hardware. The
purposes of the branch predictor is to record information
about recently seen branches so that the CPU may more
accurately guess the result of future conditional or indi-
rect branches. Aspects of the branch predictor are shared
between enclave and non-enclave processes, which may
allow the non-enclave process to infer secret-dependent
control flow in the enclave [4].

Memory Side Channels

Branch Predictor Side Channels

The OS can swap out enclave pages and then monitor page
faults from within the enclave to determine which pages the
enclave is accessing. A third method modifies the second
by monitoring tracking information in the OS page tables
to determine which pages the enclave is accessing without
inducing page faults [6].

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 7 / 11

Literature claiming to have found a vulnerability must be
evaluated in the context of the threat model. Although
some SGX papers treat side channels as out of scope, all
SGX work adopts a worst-case threat model where the
OS or hypervisor has already been compromised. Papers
targeting scenarios other than SGX may assume a weaker
threat model, such as assuming the hypervisor has not
been compromised. The choice of threat model in a formal
security analysis has no bearing on the actual probability
of an OS or hypervisor compromise, or a malicious cloud
provider. In practice, using SGX places you at no more at
risk of a compromised OS or hypervisor than not using SGX.
However, assuming an OS or hypervisor is compromised,
the SGX adversary is limited to searching for and using side
channels to extract information, unlike the non-SGX adver-
sary, who upon compromising the OS may immediately
read sensitive information from application memory. There
is no evidence to suggest that moving an application to SGX
makes it more vulnerable to side channel attacks than it
already was.

In the general cloud computing case, a straightforward but
potentially costly countermeasure is to avoid sharing hard-
ware resources between code with different trust levels (i.e.
code belonging to different cloud tenants), thus removing
potentially malicious processes from a position where they
can mount an attack. However, a goal of SGX is to provide
security even when inherently co-located components like
the OS or hypervisor are not trusted. A compromised OS or
hypervisor has control over scheduling, timing, and most
shared resources (ingredient #3).
Although the processor’s built-in single-step mechanism
is disabled while running enclaves, the OS can use system
resources like high-precision timers to schedule enclave
operations at near-single-step frequency [12]. This allows
an attacker with control over the OS to collect nearly noise-
free information about memory accesses by the enclave.

However, the privileged position of the attacker matters
only if a vulnerability exist. Side channels are unavoidable,
but a well-designed application can ensure that they do not
carry sensitive information. Several works demonstrating
memory side channel attacks on cryptographic algorithms
in SGX enclaves have targeted well-known cryptographic
libraries (e.g. OpenSSL, mbedTLS, GnuTLS) that can be
run either inside of outside of an enclave. In some cases,
the implementations targeted by the attack have known
weaknesses that exist independent of whether it runs in an
enclave or not [4], [13]. In one case, a new vulnerability was
found, but the vulnerability applies generally to the cryp-
tographic library, not specifically to SGX [14].
Most security literature defines a threat model, which expli-
cates how strong of an adversary the defense will resist
(or how much power the attacker requires to succeed).

Discussion

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 8 / 11

This section describes some strategies for protecting applications from side channel attacks. It follows the families of defenses
discussed earlier.

The most direct and robust strategy to protect against side
channel attacks is to remove secret-dependent behavior
that may leak through the side channel. This can be applied
to the case of memory side channels (in SGX, or in gen-
eral) by ensuring the program exhibits the same pattern
of memory accesses regardless of the data being operated
upon. For example, the code on both sides of an if/else con-
ditional would be placed in the same cache line. Similarly,
any data access with indirect addressing that could span
more than one cache line would need to be replicated such
that all cache lines are accessed regardless of the lookup
index [6], [13].
Another strategy that removes secret-dependent behav-
ior is using machine-intrinsic cryptographic instructions,
rather than software implementations, wherever possi-
ble. Machine instructions are likely to be implemented in a
manner that is free of timing side channels. This is the case
for Intel’s AES-NI instructions.

Protection Against Side Channel Attacks

Removing Secret-dependent Behavior

key_byte & 0x3F key_byte >> 6

In several of the cases where memory side channels have
been used to attack an enclave, the attack works because
it can determine which entry in an array or hash table is
being accessed. A simple countermeasure is to utilize ran-
domized hashing. This is a good idea in many networked
applications, whether running in SGX or not, to defend
against denial-of-service attacks where an attacker supplies
inputs chosen to produce hash collisions. Hashes and other
randomized data structures should be periodically rebuilt
with different randomization, to prevent an attacker from
collecting sufficient observations of the structure to infer
the location of any particular data.

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 9 / 11

One technique for hiding secret-dependent behavior is
to deliver the enclave code in encrypted form. The only
plaintext code in the enclave image would be a minimal
loader, responsible for decrypting the rest of the applica-
tion. Protecting the enclave image from inspection makes it
much more difficult for an attacker to reverse-engineer the
enclave code to identify exploitable side channel leakage.
An advantage of this countermeasure is that it does not
require modifying the runtime application code.

A technique that hides the secret-dependent behavior
accessible via the page fault side channel is to enforce the
use of large pages for enclave memory, greatly reducing the
resolution of the side channel [17].

Several techniques have been proposed to make enclaves
sensitive to the side channel leakage measurements. One
strategy uses transactional memory [15], [16]. Traditional
locking protects against conflicting simultaneous access to
a resource by having each task hold a “lock” for the duration
of the operation. With transactional memory, an applica-
tion may designate certain memory operations as belong-
ing to an atomic transaction. The transaction can either
complete, in which case all the operations in the transaction
will be visible to other tasks, or the transaction may “abort”,
and none of the operations will be visible to other tasks. In
the case of an aborted transaction, the important result is
that none of the memory operations that might normally
expose side channel information are applied to the shared
memory resource. Transactional memory is useful for pro-
tecting SGX applications because common measurement
techniques like forcing a page fault also causes any trans-
action referencing those pages to abort. When an enclave
observes too many aborts that indicate a likely attack, the
enclave can refuse to run, lest it potentially leak confidential
data. To deploy this countermeasure, an application must
be recompiled with suitable transactions inserted into the
program code.

A variation of the transactional memory protection updates
a counter within a transaction, to detect when the enclave
has been suspended. This requires less extensive analysis
of the enclave program than protection using transactions
alone, but incurs an overhead to maintain the counter [7].

Hiding Secret-dependent Behavior

Making Enclaves Timing Sensitive

Fortanix Self-Defending Key Management Service™
(SDKMS), secured with Intel® SGX, delivers unified key man-
agement and hardware security module (HSM) capabilities.

In the Fortanix SDKMS, all cryptographic algorithms are
hardened against side channel attacks. Varying protection
strategies are used for different algorithms:

•	 Use of hardware-intrinsic cryptographic instructions
that exhibit the same memory access and timing char-
acteristics regardless of input data.

•	 Manual alignment of critical lookup tables to fit entirely
within a cache line, so that secret-dependent access
to the lookup table does not leak via side channels.
When lookup tables do not fit within a cache line, mul-
tiple tiered lookup tables or masking is employed to
ensure that the conditional probability of any external-
ly-observable memory access is the same for all secret
values.

•	 Blinding of large integers so that the actual values
computed by any big-integer arithmetic oper-
ation do not correlate with any secret value.

When appropriate, non-cryptographic algorithms are also
protected against side channel attacks. For example:

•	 The time taken to verify passwords and API keys is
ensured to be independent of the secret password or
API key.

•	 Processing of potentially sensitive data (e.g. decoding
REST API input data) employs algorithms that do not
leak information.

Fortanix Runtime Encryption solutions protect applications
and their data in use. Within Fortanix’s Runtime Encryption
solutions, cryptographic primitives internal to the library
are protected using techniques similar to those used
 in SDKMS.

Side Channel Defenses
in Fortanix Solutions

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 10 / 11

Side channel attacks are a very real concern in any digital system that operates on sensitive data. As with many aspects of digital
security, new attacks are continually under development, and systems must be constantly updated to remain secure. SGX offers
the power to run most x86 applications in an enclave, protect applications’ data against unauthorized memory reads. To ensure
that enclaves are secure in practice, great care is needed, including the care to avoid leaking secrets through side channels.
Recently published literature identifies side channels that are present in the SGX technology, but whether there is information
available from the side channel and whether the side channel is accessible to an attacker are properties of each application and
deployment, and not of SGX itself. Fortunately, applications can use countermeasures to control these parameters. Fortanix
solutions have been designed with various defenses, leveraging expertise in hardware-based security and cryptography, to
protect against side channel attacks. The security experts at Fortanix have significant experience dealing with side channels and
are happy to help identify appropriate solutions to your security challenges.

Conclusion

mailto:info%40fortanix.com?subject=

info@fortanix.com | +1 (628) 400 2043 | 444 Castro St #702 Mountain View, CA 94041© 2018 Fortanix Inc. Page 11 / 11

[1] B. W. Lampson, “A Note on the Confinement Problem.”

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get off of My Cloud: Exploring Information Leakage in Third-party Compute Clouds,”
in Proceedings of the 16th ACM Conference on Computer and Communications Security, New York, NY, USA, 2009, pp. 199–212.

[3] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side Channels and Their Use to Extract Private Keys,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, New York, NY, USA, 2012, pp. 305–316.

[4] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing,” in 26th
USENIX Security Symposium (USENIX Security 17), Vancouver, BC, 2017, pp. 557–574.

[5] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating Systems,” in Proceedings of the
2015 IEEE Symposium on Security and Privacy, Washington, DC, USA, 2015, pp. 640–656.

[6] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution,” in 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, 2017, pp. 1041–1056.

[7] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged Side-Channel Attacks in Shielded Execution with DéJà Vu,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, New York, NY, USA, 2017, pp. 7–18.

[8] “Meltdown and Spectre.” [Online]. Available: https://meltdownattack.com/.
[9] “Reading privileged memory with a side-channel.” [Online]. Available: https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memo-

ry-with-side.html.

[10] “Intel® Software Guard Extensions Developer Guide.” .

[11] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace : Oblivious Memory Primitives from Intel SGX,” 549, 2017.

[12] M. Hähnel, W. Cui, and M. Peinado, “High-Resolution Side Channels for Untrusted Operating Systems,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), Santa Clara, CA, 2017, pp. 299–312.

[13] F. Brasser et al., “DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization,” ArXiv170909917 Cs, Sep. 2017.

[14] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware Guard Extension: Using SGX to Conceal Cache Attacks,” ArXiv170208719 Cs,
Feb. 2017.

[15] M.-W. Shih, S. Lee, and T. Kim, “T-SGX: Eradicating Controlled-Channel Attacks Against Enclave Programs.

[16] D. Gruss, J. Lettner, and F. Schuster, “Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory.”

[17] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “SGX-LAPD: Thwarting Controlled Side Channel Attacks via Enclave
Verifiable Page Faults,” in Research in Attacks, Intrusions, and Defenses, 2017, pp. 357–380.

Bibliography

mailto:info%40fortanix.com?subject=
https://meltdownattack.com/
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

