What is FIPS 140-2 Level 3 HSM

What is FIPS 140-2 Level 3 HSM

(Federal Information Processing Standard) FIPS 140-2 Level 3 certified HSMs are designed to prevent physical tampering with tamper-evident seals, intrusion sensors, and self-destruct mechanisms. These devices meet the requirements of Level 3 of the FIPS 140-2 standard. They undergo rigorous testing and certification to meet the highest security standards. With Level 3 certification, organizations can rest assured that sensitive information and cryptographic keys are well-protected against physical attacks. 

FIPS standards are developed by NIST's Computer Security Division and are widely adopted in both government and non-government sectors worldwide as a security benchmark. 

FIPS 140-3 is the latest benchmark for validating the effectiveness of cryptographic hardware, and products with FIPS 140-3 certification have been formally validated by both the US and Canadian governments.  

The US Secretary of Commerce signed FIPS 140-3 on May 1, 2019, and starting from April 1, 2022, new submissions must comply with the FIPS PUB 140-3 Security Requirements for Cryptographic Modules, replacing FIPS 140-2. 

The US government uses FIPS 140-2 to verify that private sector cryptographic modules and solutions (hardware and software) meet NIST standards and adhere to the Federal Information Security Management Act of 2002 (FISMA).  

FIPS 140-2 has four levels. For a cryptographic module to meet the stringent requirements of Level 3 under the FIPS 140-2, it must undergo rigorous testing to demonstrate compliance with all four levels of the standard 

Security Level 1 specifies basic security requirements for a cryptographic module. No physical security mechanisms are required except for production-grade equipment. Examples include IC cards, add-on security products, and PC encryption boards. Software cryptographic functions are allowed in a general-purpose PC. This level is suitable for low-level security applications where hardware is too expensive. 

Security Level 2 adds physical security to a Security Level 1 cryptographic module. This level requires tamper-evident coatings, seals, or pick-resistant locks. The coating or seal must be broken to attain physical access to the plaintext cryptographic keys and other critical security parameters within the module. Role-based authentication is also required. Software cryptography is allowed in multi-user timeshared systems when used with a C2 or equivalent trusted operating system. 

Security Level 3 requires enhanced physical security to prevent intruders from accessing critical security parameters held within the module. For example, a multi-chip embedded module must be contained in a strong enclosure. The critical security parameters are zeroized if a cover is removed or a door is opened. This level also requires identity-based authentication and stronger requirements for entering and outputting critical security parameters. Software cryptography is allowed in multi-user timeshared systems when a B1 or equivalent trusted operating system is employed along with a trusted path for the entry and output of critical security parameters. 

Security Level 4 provides the highest level of security. It provides an envelope of protection around the cryptographic module. Level 4 physical security aims to detect penetration of the device from any direction, and critical security parameters should be zeroized. This level also protects a module against compromising its security due to environmental conditions or fluctuations outside of the module's normal operating ranges for voltage and temperature. Level 4 devices are particularly useful for operation in a physically unprotected environment.

Learn more about:

Fortanix HSM Gateway

How to leverage Runtime Encryption® in industry’s first HSM as a Service

HSM-as-a-Service- Innovate before it's too late

HSM as a Service