What is Confidential Computing?

Enterprise Key Management

What is enterprise key management?Why is enterprise key management important?What are the benefits of using Enterprise Key Management for cloud data security?What are the challenges in enterprise key management?How does enterprise key management work?What are some best practices for enterprise key management?Can enterprise key management be integrated with existing systems?What are the compliance considerations for enterprise key management?Can enterprise key management recover encrypted data if a key is lost?How does enterprise key management address cloud and multi-cloud environments?Are there industry standards for enterprise key management?What are the pain points related to data security in hybrid multicloud environments ?What negative business impact can result from data security siloes and lack of monitoring?Do existing DSPM and CSPM tools address the challenges of data encryption risks?How do encryption and key management contribute to data protection? What challenges arise from the proliferation of encryption across different services?How does Fortanix address the challenges associated with encryption key management?How does Fortanix Enterprise Key Posture Management (EKPM) provide visibility into data security risks and industry benchmarks? How does Fortanix address the challenge of reporting compliance with policies and regulations?How does Fortanix Enterprise Key Posture Management (EKPM) align with regulatory and data security policies and standards? How does Fortanix Enterprise Key Posture Management (EKPM) simplify the complex and time-consuming task of correlating and analyzing at-risk data and services? How does Fortanix Enterprise Key Posture Management (EKPM) help organizations prioritize and remediate the most harmful risks quickly? Why are manual discovery processes considered complex and time-consuming, and how does Fortanix Enterprise Key Posture Management (EKPM) simplify them? How does Fortanix Enterprise Key Posture Management (EKPM) reduce the inefficient use of security personnel?Can Fortanix Enterprise Key Posture Management (EKPM) integrate with existing security and compliance tools? Does Fortanix Enterprise Key Posture Management (EKPM) integrate with SIEM or SOAR solutions for log analytics? Can Fortanix Enterprise Key Posture Management (EKPM) integrate with third-party IT ticketing systems for remediation workflows?

Post Quantum Cryptography

What is the quantum risk and its impact on data security?What are the implications of data sensitivity vs time?When will quantum computing pose a threat to encryption methods?Which protocols and certificates may become vulnerable in the post-quantum era?How can enterprises prepare data security strategies for the post-quantum era?Do current cloud platforms support post-quantum algorithms?What is the concept of cryptographic agility?How does cryptographic agility impact risk management for enterprises?Why is data classification important in the context of post-quantum readiness?How does crypto agility affect disaster recovery planning and insurance costs?What is the technical impact of post-quantum agility on organizations?How does Fortanix DSM help achieve cryptographic agility?What features does Fortanix DSM offer for key lifecycle management in PQC implementation?How does Fortanix DSM facilitate integration with leading applications in PQC implementation?

What is Confidential Computing?

Confidential Computing is a set of technologies and practices that enable data to be processed securely and privately, even from the entity performing the processing.

Secure computing protects data and code from unauthorized access or modification, even by cloud providers hosting the processing.

Data exists in three states: at rest, in transit, and in use. Until now, it was impossible to encrypt data in use. Confidential Computing has solved the problem by retaining data encrypted even at runtime in memory.

Secure enclaves, such as Intel SGX (Software Guard Extensions) or AMD SEV (Secure Encrypted Virtualization), are practical examples of Confidential Computing.

These hardware-based security features enable sensitive data to be encrypted and processed in a system-isolated trusted execution environment (TEE).

As a result, neither the operating system nor the hypervisor can access the data being processed within the enclave.

Confidential Computing facilitates the migration of highly sensitive data to the cloud and the development of multi-party sharing scenarios that were previously difficult to implement due to privacy, security, and legal restrictions.

Additional Resources:
Confidential Computing: A Tale About Trust